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CHAPTER 11 -- VIBRATORY  MOTION

11.1)  A = .5 meters; T = .3 sec/cycle; and m = 1.2 kg.

a.)  Oscillatory frequency:

ν = 1/T
   = 1/(.3 sec/cycle)
   = 3.33 cycles/sec    (or 3.33 hz).

b.)  Angular frequency (the number of radians per second the motion
sweeps through):

ω  = 2 ν
    = 2(3.14)(3.33 hz)
    = 20.94 rad/sec.

c.)  Spring constant:

 ω  = (k/m)1/2

      ⇒     k = ω2m
       = (20.94 rad/sec)2(1.2 kg)
       = 526.4 nt/m.

d.)  Maximum velocity (occurs where acceleration is zero, or while
mass passes through equilibrium position):

vmax = ωA
         = (20.94 rad/sec)(.5 m)
         = 10.47 m/s.

e.)  Magnitude of the maximum acceleration (occurs where force is
greatest, or at extremes of motion):

amax =  ω2 A

         = (20.94 rad/sec)2(.5 m)
         = 219.2 m/s2.
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f.)  Energy in system:

E = (1/2)kA2

    =   .5  (526.4 nt/m)(.5 m)2

    = 65.8 joules.

11.2)  m = .25 kg; k = 500 nt/m; vmax = 3 m/s.

a.)  Angular frequency:

ω  = (k/m)1/2

    = [(500 nt/m)/(.25 kg)]1/2

    = 44.72 rad/sec.

b.)  Frequency:

ω  = 2 ν
    ⇒     ν = ω /2

     = (44.72 rad/sec)/2
     = 7.12 hz.

c.)  Period:

T = 1/ ν
   = 1/(7.12 hz)
   = .14 sec/cycle.

d.)  Amplitude:

vmax = ωA
    ⇒     A = vmax/ω

             = (3 m/s)/(44.72 rad/sec)
                = .067 m.

e.)  Total energy:

Et = (1/2)kA2

     = .5(500 nt/m)(.067 m)2

     = 1.125 joules.
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f.)  Magnitude of maximum force (this will be applied when the
acceleration is maximum--i.e., at the extremes):

amax = ω2 A

         = (44.72 rad/sec)2(.067 m)
         = 134 m/s2.

N.S.L.   ⇒ Fmax. = mamax
= (.25 kg)(134 m/s2)
= 33.5 nts.

11.3)  The most general position as a function of time expression is:

x = A sin (ωt + φ)    or    x = A sin (2 νt + φ).

In our case, we know that x = .7 sin (14t - .35).  Matching the
appropriate variables leads to:

a.)  Amplitude:   A = .7 meters (by inspection).

b.)  Angular frequency:  ω  = 14 rad/sec (by inspection).

c.)  Frequency:

ω  = 2 ν
    ⇒     ν =  ω /2

      = (14 rad/sec)/2
      = 2.23 hz.

d.)  Position at t = 3 seconds:

x = .7 sin (14t - .35)
   = .7 sin (14(3 sec) - .35)
   = -.51 m.

e.)  Position at t = 3.4 seconds:

x = .7 sin (14t - .35)
   = .7 sin (14(3.4 sec) - .35)
   = -.088 m.
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f.)  Velocity at t = 0:

v =  ωA cos (ωt + φ)
   = (14 rad/sec)(.7 m) cos (14t - .35)
   = (14 rad/sec)(.7 m) cos (14(0) - .35)
   = 9.2 m/s.

g.)  Acceleration at t = 0:

a = - ω2Asin ( ωt + φ)
   = -(14 rad/sec)2(.7 m) sin (14t - .35)
   = -(14 rad/sec)2(.7 m) sin (14(0) - .35)
   = 47 m/s2.

11.4)  The period of oscillation T is related to the motion's frequency ν  by the
relationship ν  =1/T.  The frequency ν  is related to the angular frequency ω   by the
relationship ω  =2 ν .  In simple harmonic motion, the angular frequency is a
function of the pendulum arm length L and the acceleration of gravity g.  That is:

ω   = (g/L)1/2

     ⇒     g =  ω2L
        =  (2 ν)2L

      = (2/T)2L
      = (2/(2 sec))2(1.75 m)
      = 17.27 m/s2.

Notice that the mass has nothing to do with anything here (just as the
mass would have nothing to do with the rate at which velocity changes as a body
falls near the planet's surface).

11.5)
a.)  The equation α  + (12g/7L) θ  = 0 is of the form "acceleration plus

constant-times-displacement equals zero" (even though the acceleration
and displacement terms are angular ones).  That means the motion is, by
definition, simple harmonic in nature.
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b.)  For simple harmonic motion, we know that the square of the
angular frequency of the motion is equal to the constant in front of the
displacement term.  In this case:

ω2 = 12g/7L
          ⇒     ω  = (12g/7L)1/2.

We also know that w = 2 ν , or:

ν = ω /2
       = [(12g)/(7L)]1/2/(2)

    = (1.7g/L)1/2/(2)
    = [(1.7)(9.8 m/s2)/(1.3 m)]1/2/[(2(3.14)]
    = .57 cycles/second.

11.6)  Note that when the 3 kg mass is attached to the spring, gravity
acting on the mass applies a force such that the spring elongates .7 meters.  Also,
at t = 0, y = -.15 meters moving away from equilibrium:

a.)  Spring constant:  The spring constant tells you how much force F
is required to elongate the spring.  In this case, GRAVITY is used to
elongate the spring a distance d, or:

k = (mg)/d
      = (3 kg)(9.8 m/s2)/(.7 m)
      = 42 nt/m.

b.)  Angular frequency:

ω  = (k/m)1/2

    = [(42 nt/m)/(3 kg)]1/2

    = 3.74 rad/sec.

c.)  Amplitude:  A = .4 meters (stated in problem: "once at equilibrium,
the system is displaced an additional .4 meters and released").

d.)  Frequency:

ω  = 2 ν
    ⇒     ν = ω /2

      = (3.74 rad/sec)/2
      = .6 hz.
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e.)  Period:

T = 1/ ν
   = 1/(.6 cycles/sec)
   = 1.67 sec/cycle.

f.)  Total energy:

Et = (1/2)kA2

     = .5(42 nt/m)(.4 m)2

     = 3.36 joules.

g.)  Maximum velocity:

vmax = ωA
         = (3.74 rad/sec)(.4 m)
         = 1.5 m/s.

h.)  The velocity is maximum at equilibrium.

i.)  Maximum acceleration:

amax = ω2A

         = (3.74 rad/sec)2(.4 m)
         = 5.6 m/s2.

j.)  The acceleration is maximum at either extreme (i.e., at x = +A).

k.)  To determine the general algebraic expression (using y as the
position variable), we start with the standard form:

     y = A sin (ωt + φ)    or    y = A sin (2 νt + φ).

Knowing the amplitude and the angular frequency, we can
immediately write:

y = .4 sin (3.74t + φ).

The only variable we need to determine anew is the phase shift φ .  We
know that at t = 0, y = -.15 moving away from equilibrium.  The sine wave
shown on the next page highlights this situation.  To determine the phase
shift φ :
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y(t)--(original 
       axis)

t

01

A = .4 m

y = -.15 mposition where mass is
moving AWAY FROM
     EQUILIBRIUM

position where mass is
moving AWAY FROM
     EQUILIBRIUM

01 01

 possible 
new axis

 possible 
new axis

02
(How do you know?  As time 
increases from t = 0, y gets 
more negative--ie. further 
away from y=0)

We know that in general,

y = .4 sin (3.74t + φ).

Substituting in t = 0 and y = -.15, we can write:

-.15 = .4 sin (3.74(0) + φ)
-.15 = .4 sin ( φ).

Solving for φ  yields:

φ  = sin-1 [(-.15)/(.4)]
   = -.384 rad.

The question is, "What does that mean?"  That is, there are two angles
that could possibly satisfy the math in this situation, one in the fourth
quadrant ( φ 1 in the sketch below) and one in the third quadrant (φ 2).  We
have been given a value for the fourth quadrant angle (that is, φ 1 = -.384

radians).  We can find the other using math and a bit of logic.
To tell which of the two we really want, look at the sketch below (both

possible axes are shown).

From observation, it is evident that the object is moving away from
equilibrium when in the third quadrant.  There is no formula to get the
angle required to move the axis to the appropriate third-quadrant position
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on the sine wave (we can move left or right to get there--either will do), so
we will have to use our heads.

Doing so, the sketch allows us to see that φ 2 is equal to the addition of
the magnitude of φ 1 and - (i.e., -3.14 + .384 = -2.76 rad).  Another
possibility would be to add the magnitude of φ 1 to + (i.e., 3.14 + .384 =

3.53 rad).  Both cases are shown in the figure; both cases designate an
appropriate position for the new axis.

Bottom line:  The general algebraic expression that defines the posi-
tion of the body as a function of time is:

y = .4 sin (3.74t - 2.76)
or

y = .4 sin (3.74t + 3.53).

Either is acceptable.

11.7)  Although this probably appears to be a completely off-the-wall problem, it
is characteristic of a class of problems that have a common hallmark.
Specifically, they all give information about the force acting on a body moving in
periodic motion (or they give enough information for you to derive a force rela-
tionship--in this case, we derived the required expression in the previous
chapter), and they always ask something about the period of the motion.

a.)  If we can determine Jack's period, we will have the period of the
satellite (the two have to be the same if the satellite is going to take a
picture of Jack head every time it appears out the top (at the bottom, it
will be his feet that will appear).  The key to finding Jack's period is found
in the gravitational force that keeps him oscillating between poles.

Assuming the motion is in the y direction and leaving the sign of the
acceleration embedded in the ay term, we can write:

   ∑Fy:

  
  
− GmemJ

re
3









y = mJay .

Rearranging, this implies that:

      
  
ay + Gme

re
3









y = 0 .
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This is the characteristic equation for simple harmonic motion.
Knowing that, we also know that the angular frequency of Jack's
oscillatory motion must be equal to the square root of the constant in front
of the displacement term.  Using our relationships between angular
frequency, frequency, and period, we can write:

     ω  = (Gme/re
3)1/2.

As
           ω  = 2 ν

and
           T = 1/ ν,

we can write:
             T = 2/(Gme/re

3)1/2.

b.)  As the note in the problem said, this really isn't a vibratory
motion problem--it's more of a gravitation problem in review.  No matter.
The practice will do you good.

Knowing the period of motion, we can generate an expression for the
velocity of the mass in terms of its radius.  That is:

vs = (circumference of orbit)/T

    = [2rsatellite]/[2/(Gme/re
3)1/2]

    = (Gme/re
3)1/2rs.

Knowing the velocity, we can use N.S.L. and the fact that the
satellite's motion is centripetal (we'll assume a circular path for
simplicity).  Using that approach, we get:

∑Fc:

Gmems/rs
2 = ms(vs

2/rs)

     ⇒      rs = (Gme/vs
2).

Plugging this back into our velocity expression above, we get:

vs = (Gme/re
3)1/2rs

    = (Gme/re
3)1/2(Gme/vs

2)

⇒     vs = [(Gme/re
3)1/2Gme]

1/3

  = (Gme/re)1/2.
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We derived an expression for rs in terms of vs.  Substituting vs into
that expression yields:

rs = (Gme/vs
2)

    = Gme/[(Gme/re)1/2]2

                                         = re.

Amazing!  The satellite would have to skim the earth's surface to have
the velocity associated with the correct period.

Wasn't that fun!


